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Background: Non-Volatile Memory

« DRAM-Ilike performance, disk-like durability
e Data is retained after shutting down the machine

 Planned or unexpected



Challenge: Cache Reorder Writes

Application

Data structures in
NVM O




Durable Data Structures

 Challenge: design a data structure for NVM
 Subject to: cache can reorder writes

 And: without reducing performance a lot



EXisting Approaches

* Log modifications (undo log: old value, redo log: new value)

 Explicitly force a write back (flush) modified cache lines

Access to memory
IS expensive

Can we do better?




Our Approach

e Algorithm
* Periodic persistency

e In Cache Line Log (InCLL): our novel contribution

e Zero explicit writes back on the fast path of the data
structure



Periodic Persistency

* Flush entire cache infrequently (e.g., every 64ms)

e E.g., Xx86’s wbinvd instruction

I
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Periodic Persistency

* Flush entire cache infrequently (e.g., every 64ms)
e E.g., Xx86’s wbinvd instruction
 Return to a consistent state at the end of an epoch

e Using

v Epoch1 v Epoch2 v Epoch3 v Epoch4 v Epoch5



Ensuring Consistent State: B+ Tree

* put(key: 10, value: 12)




Ensuring Consistent State: B+ Tree

* put(key: 10, value: 12)

e node.value[0] =12

Can we avoid write backs?

1l.Log <- O /dValue
2 .WriteBack (Log)
3.Node <- NewValue
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* Modity multiple variables is hard
* Requires a lock or TM
* Modify a single variable is easy

* Fetch and Add

* Compare and Swap




In Cache Line Log

* A cache line is evicted to memory atomically
 Embed the log inside the same cache line as modified node

 No explicit write-back

Log

B+ node 11




In Cache Line Log

* A cache line is evicted to memory atomically
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How In Cache Line Log Works
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How In Cache Line Log Works

In Cache Line Log

enables recovery

_

g without explicit write backs




In Cache Line Log: Drawback

e Capacity is very limited

Log



External Undo Log at Node Granularity

e Node is modified two times

* Probably it will be modified again during the epoch
* Log entire node, explicit write back

* Subsequent modifications (during same epoch) do not
require logging



External Undo Log + In Cache Line Log

 First modification: use InCLL
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External Undo Log + In Cache Line Log

 First modification: use InCLL
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External Undo Log + In Cache Line Log

 First modification: use INCLL * 2+ modifications: use
external log

Effective when Effective when
modifications are sparse modifications are dense

® Data structure is large ® Splitting a B+ node
® Key distribution is uniform ® Modify a range of values




External Undo Log + In Cache Line Log

e Best case: e \Worst case:
e A Sing|e popu|ar key * Two keys modified exactly
once

e Key distribution is skewed
* One explicit write back

per two modifications

Many additional details, see\paper




Implementation and Evaluation

* Incorporated into MassTree [Mao, Kohler, Morris, EuroSys’12]
B+ Tree/Trie with excellent performance

e Also made MassTree’s allocator durable with InCLL
 Avoid and durable memory leaks

* Workloads
 Ycsb A (50% writes), B (5% writes), C (0% writes), E (scans)

e Key distribution: Uniform and Zipfian



Performance vs. Workload
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Performance vs. NVM Latency
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Conclusion

* Explicit write backs (cache line flushes) are expensive
e« Use
* Place log inside cache line and avoid explicit write backs

* Plus: Periodic persistence, External log for second
modification

 Durability with small overhead



Conclusion

* Explicit write backs are expensive
 Use In Cache Line Log
 Place log inside cache line and avoid explicit write backs

* Plus: Periodic persistence, External log
modification

Questions?
* Durability with small overhead



