Fine-Grained
Checkpointing with
In-Cache-Line Logging

Nachshon Cohen David T. Aksun
Hillel Avni James R. Larus

=PrL

A2 Huawel



Background: Non-Volatile Memory

« DRAM-Ilike performance, disk-like durability
e Data is retained after shutting down the machine

 Planned or unexpected



Challenge: Cache Reorder Writes

Application

Data structures in
NVM O




Durable Data Structures

 Challenge: design a data structure for NVM
 Subject to: cache can reorder writes

 And: without reducing performance a lot



EXisting Approaches

* Log modifications (undo log: old value, redo log: new value)

 Explicitly force a write back (flush) modified cache lines

Access to memory
IS expensive

Can we do better?




Our Approach

e Algorithm
* Periodic persistency

e In Cache Line Log (InCLL): our novel contribution

e Zero explicit writes back on the fast path of the data
structure



Periodic Persistency

* Flush entire cache infrequently (e.g., every 64ms)

e E.g., Xx86’s wbinvd instruction

I

v Epoch1 v Epoch2 v Epoch3 v Epoch4 v Epoch5




Periodic Persistency

* Flush entire cache infrequently (e.g., every 64ms)
e E.g., Xx86’s wbinvd instruction
 Return to a consistent state at the end of an epoch

e Using

v Epoch1 v Epoch2 v Epoch3 v Epoch4 v Epoch5



Ensuring Consistent State: B+ Tree

* put(key: 10, value: 12)




Ensuring Consistent State: B+ Tree

* put(key: 10, value: 12)

e node.value[0] =12

Can we avoid write backs?

1l.Log <- O /dValue
2 .WriteBack (Log)
3.Node <- NewValue




S g S PN

W A g N b b g sl s Sl - ol A

Concurrencg

* Modity multiple variables is hard
* Requires a lock or TM
* Modify a single variable is easy

* Fetch and Add

* Compare and Swap




In Cache Line Log

* A cache line is evicted to memory atomically
 Embed the log inside the same cache line as modified node

 No explicit write-back

Log

B+ node 11




In Cache Line Log

* A cache line is evicted to memory atomically
 Embed the log inside the same cache line as modified node

 No explicit write-back

Log

B+ node 12




How In Cache Line Log Works

AEEEEEN

No write back | 1 .
O{E ﬁ 110 Implicit » .

write back




How In Cache Line Log Works

In Cache Line Log

enables recovery

_

g without explicit write backs




In Cache Line Log: Drawback

e Capacity is very limited

Log



External Undo Log at Node Granularity

e Node is modified two times

* Probably it will be modified again during the epoch
* Log entire node, explicit write back

* Subsequent modifications (during same epoch) do not
require logging



External Undo Log + In Cache Line Log

 First modification: use InCLL

INCLL
Node1i
Node2

Node3

NodeS



External Undo Log + In Cache Line Log

 First modification: use InCLL

C

Node1

Node2

Node3

Node5

12

40

70

-

e 2+ modifications: use

external log

12 14 | 15

External
log

On average,

1/#modifications
explicit write backs




External Undo Log + In Cache Line Log

 First modification: use INCLL * 2+ modifications: use
external log

Effective when Effective when
modifications are sparse modifications are dense

® Data structure is large ® Splitting a B+ node
® Key distribution is uniform ® Modify a range of values




External Undo Log + In Cache Line Log

e Best case: e \Worst case:
e A Sing|e popu|ar key * Two keys modified exactly
once

e Key distribution is skewed
* One explicit write back

per two modifications

Many additional details, see\paper




Implementation and Evaluation

* Incorporated into MassTree [Mao, Kohler, Morris, EuroSys’12]
B+ Tree/Trie with excellent performance

e Also made MassTree’s allocator durable with InCLL
 Avoid and durable memory leaks

* Workloads
 Ycsb A (50% writes), B (5% writes), C (0% writes), E (scans)

e Key distribution: Uniform and Zipfian



Performance vs. Workload

13 B M7+ B INCLL

10
3 14% & 112%
d 15%
= 8
c
S
§
ot 5
=
o
i -
on
>
= 3
|_
0

YCSBA YCSBB YCSBC YCSBE YCSBA YCSBB YCSBC YCSBE
Uniform Uniform Uniform Uniform  Zipfian  Zipfian Zipfian  Zipfian

Workload



Performance vs. NVM Latency

B YCSB_A LOGGING Uniform B YCSB_A INCLL Uniform

Throughput (Millions ops/sec)

0 100 200 300 400 500 600 700 800 900 1000

Added Delay (ns)



Conclusion

* Explicit write backs (cache line flushes) are expensive
e« Use
* Place log inside cache line and avoid explicit write backs

* Plus: Periodic persistence, External log for second
modification

 Durability with small overhead



Conclusion

* Explicit write backs are expensive
 Use In Cache Line Log
 Place log inside cache line and avoid explicit write backs

* Plus: Periodic persistence, External log
modification

Questions?
* Durability with small overhead



